Solidification in soft-core fluids: Disordered solids from fast solidification fronts.
نویسندگان
چکیده
Using dynamical density functional theory we calculate the speed of solidification fronts advancing into a quenched two-dimensional model fluid of soft-core particles. We find that solidification fronts can advance via two different mechanisms, depending on the depth of the quench. For shallow quenches, the front propagation is via a nonlinear mechanism. For deep quenches, front propagation is governed by a linear mechanism and in this regime we are able to determine the front speed via a marginal stability analysis. We find that the density modulations generated behind the advancing front have a characteristic scale that differs from the wavelength of the density modulation in thermodynamic equilibrium, i.e., the spacing between the crystal planes in an equilibrium crystal. This leads to the subsequent development of disorder in the solids that are formed. In a one-component fluid, the particles are able to rearrange to form a well-ordered crystal, with few defects. However, solidification fronts in a binary mixture exhibiting crystalline phases with square and hexagonal ordering generate solids that are unable to rearrange after the passage of the solidification front and a significant amount of disorder remains in the system.
منابع مشابه
Solidification fronts in supercooled liquids: how rapid fronts can lead to disordered glassy solids.
We determine the speed of a crystallization (or, more generally, a solidification) front as it advances into the uniform liquid phase after the system has been quenched into the crystalline region of the phase diagram. We calculate the front speed by assuming a dynamical density functional theory (DDFT) model for the system and applying a marginal stability criterion. Our results also apply to ...
متن کاملNon-Equilibrium Solidification of Undercooled Metallic Melts
If a liquid is undercooled below its equilibrium melting temperature an excess Gibbs free energy is created. This gives access to solidification of metastable solids under non-equilibrium conditions. In the present work, techniques of containerless processing are applied. Electromagnetic and electrostatic levitation enable to freely suspend a liquid drop of a few millimeters in diameter. Hetero...
متن کاملA unified particle model for fluid-solid interactions
We present a new method for the simulation of melting and solidification in a unified particle model. Our technique uses the Smoothed Particle Hydrodynamics (SPH) method for the simulation of liquids, deformable as well as rigid objects, which eliminates the need to define an interface for coupling different models. Using this approach, it is possible to simulate fluids and solids by only chang...
متن کاملSolidification in syntectic and monotectic systems.
We present theoretical studies of syntectic and monotectic solidification scenarios. Steady-state solidification along the liquid-liquid interface in a syntectic system is considered by means of a boundary-integral technique developed previously. We study the case of small asymmetry of the pattern and extract from the results the scaling relations in terms of the undercooling and the asymmetry ...
متن کاملSolute trapping and diffusionless solidification in a binary system.
Numerous experimental data on the rapid solidification of binary systems exhibit the formation of metastable solid phases with initial (nominal) chemical composition. This fact is explained by complete solute trapping leading to diffusionless (chemically partitionless) solidification at a finite growth velocity of crystals. Special attention is paid to developing a model of rapid solidification...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 90 4 شماره
صفحات -
تاریخ انتشار 2014